Ÿ |
Y. Miyatake and T. Sogabe, gAdaptive projected SOR algorithms for nonnegative quadratic programmingh, Japan J. Ind. Appl. Math., (accepted) |
Ÿ |
F. Tatsuoka, T. Sogabe, T. Kemmochi, S.-L. Zhang, gComputing the matrix exponential with the double exponential formulah, Special Matrices (accepted) |
Ÿ |
Y. Satake, T. Sogabe, T. Kemmochi, S.-L. Zhang, gMatrix equation representation of the convolution equation and its unique solvabilityh, Special Matrices (accepted) |
Ÿ |
R. Zhao, T. Sogabe, T. Kemmochi, S.-L. Zhang, "Shifted LOPBiCG: A locally orthogonal product-type method for solving nonsymmetric shifted linear systems based on Bi-CGSTAB", Numer. Linear Algebra. Appl., 31(2024), e2538. |
Ÿ |
J. Niu, T. Sogabe, L. Du, T. Kemmochi, S.-L. Zhang, "Tensor product-type methods for solving Sylvester tensor equations", Appl. Math. Compute, 457 (2023), 128155. |
Ÿ |
E. Miyazaki, T. Kemmochi, T. Sogabe, S.-L. Zhang, "A structure-preserving numerical method for the fourth-order geometric evolution equations for planar curves", Commun. Math. Res., 39 (2023), pp. 296-330. |
Ÿ |
S. Takahira, A. Ohashi, T. Sogabe, T. S. Usuda, gQuantum algorithms based on the block-encoding framework for matrix functions by contour integralsh, Quantum Inform. Comput., 22 (2022), pp. 965-979. |
Ÿ |
A. Ohashi, T. Sogabe, gRecent development for computing singular values of a generalized tensor sumh, J. Adv. Simul. Sci. Eng. (JASSE), 9 (2022), pp. 136-149. |
Ÿ |
F. Tatsuoka, T. Sogabe, Y. Miyatake, T. Kemmochi, S.-L. Zhang, gComputing the matrix fractional power based on the double exponential formulah, Electron. Trans. Numer. Anal., 54 (2021), pp. 558-580. |
Ÿ |
A. Ohashi, T. Sogabe, gNumerical algorithms for computing an arbitrary singular value of a tensor sumh, Axioms 10 (2021), 211. (14pp.) |
Ÿ |
T. Hoshi, M. Kawamura, K. Yoshimi, Y. Motoyama, T. Misawa, Y. Yamaji, S. Todo, N. Kawashima, T. Sogabe, gKƒÖ -- Open-source library for the shifted Krylov subspace methodh, Comput. Phys. Commun., 258 (2021), 107536. |
Ÿ |
K.-I. Ishikawa, T. Sogabe, gA thick-restart Lanczos type method for Hermitian J-symmetric eigenvalue problemsh, Japan J. Ind. Appl. Math., 38 (2021), pp. 233-256. |
Ÿ |
J. Jia, T. Sogabe, gGeneralized Sherman-Morrison-Woodbury formula based algorithm for the inverses of opposite-bordered tridiagonal matricesh, J. Math. Chem., 58 (2020), pp. 1466-1480. |
Ÿ |
T. Sogabe, A. Suzuki, S.-L. Zhang, gAn implicit evaluation method of vector 2-norms arising from sphere constrained quadratic optimizationsh, CSIAM Trans. Appl. Math., 1 (2020), pp. 142-154 (Invited) |
Ÿ |
S. Takahira, A. Ohashi, T. Sogabe, T. S. Usuda, gQuantum algorithm for matrix functions by Cauchy's integral formulah, Quantum Inform. Comput., 20:1-2 (2020), pp. 14-36. |
Ÿ |
Y. Satake, T. Sogabe, T. Kemmochi, S.-L. Zhang, gOn a transformation of the *-congruence Sylvester equation for the least squares optimizationh, Optim. Methods & Softw., 35 (2020), pp. 974-981. |
Ÿ |
F. Tatsuoka, T. Sogabe, Y. Miyatake, S.-L. Zhang, gAlgorithms for the computation of the matrix logarithm based on the double exponential formulah, J. Comput. Appl. Math., 373 (2020), 112396. |
Ÿ |
Y. Miyatake, T. Sogabe, S.-L. Zhang, gAdaptive SOR methods based on the Wolfe conditionsh, Numer. Algorithms, 84 (2020), pp. 117-132. |
Ÿ |
Y. Miyatake, T. Nakagawa, T. Sogabe, S.-L. Zhang, gA structure-preserving Fourier pseudo-spectral linearly implicit scheme for the space-fractional nonlinear Schrödinger equationh, J. Comput. Dyn., 6 (2019), pp. 361-383. |
Ÿ |
A. Ohashi, T. Sogabe, gOn computing the minimum singular value of a tensor sumh, Special Matrices, 7 (2019), pp. 95-106. |
Ÿ |
Y. Satake, M. Oozawa, T. Sogabe, Y. Miyatake, T. Kemmochi, S.-L. Zhang, gRelation between the T-congruence Sylvester equation and the generalized Sylvester equationh, Appl. Math. Lett., 96 (2019), pp. 7-13. |
Ÿ |
S. Takahira, T. Sogabe, T. S. Usuda, gBidiagonalization of (k, k + 1)-tridiagonal matricesh, Special Matrices, 7 (2019), pp. 20-26. |
Ÿ |
D. Lee, T. Hoshi, T. Sogabe, Y. Miyatake, S.-L. Zhang, gSolution of the k-th eigenvalue problem in large-scale electronic structure calculationsh, J. Comput. Phys., 371 (2018), pp. 618-632. |
Ÿ |
A. Imakura, T. Sogabe, S.-L. Zhang, gA look-back-type restart for the restarted Krylov subspace methods for solving non-Hermitian linear systemsh, Japan J. Ind. Appl. Math., 35 (2018), pp. 835-859. |
Ÿ |
Y. Miyatake, T. Sogabe, S.-L. Zhang, gOn the equivalence between SOR-type methods for linear systems and the discrete gradient methods for gradient systemsh, J. Comput. Appl. Math., 342 (2018), pp. 58-69. |
Ÿ |
K. Ooi, Y. Mizuno, T. Sogabe, Y. Yamamoto, S.-L. Zhang, gSolution of a nonlinear eigenvalue problem using signed singular valuesh, East Asia J. on Appl. Math., 7 (2018), pp. 799-809. |
Ÿ |
L. Du, T. Sogabe, S.-L. Zhang, gA fast algorithm for solving tridiagonal quasi-Toeplitz linear systemsh, Appl. Math. Lett., 75 (2018), pp. 74-81. |
Ÿ |
M. Oozawa, T. Sogabe, Y. Miyatake, S.-L. Zhang, gOn a relationship between the T-congruence sylvester equation and the Lyapunov equationh, J. Comput. Appl. Math., 329 (2018), pp. 51-56. |
Ÿ |
F. Yilmaz, T. Sogabe, E. Kirklar, gOn the pfaffians and determinants of some skew-centrosymmetric matricesh, J. Integer Sequences, 20 (2017), pp. 1-9. |
Ÿ |
Y. Miyatake, G. Eom, T. Sogabe, S.-L. Zhang, gEnergy-preserving H1-Galerkin schemes for the Hunter-Saxton equationh, J. Math. Res. Appl., 37 (2017), pp. 107-118. |
Ÿ |
F. Tatsuoka, T. Sogabe, Y. Miyatake, S.-L. Zhang gA cost-efficient variant of the incremental Newton iteration for the matrix pth rooth, J. Math. Res. Appl., 37 (2017), pp. 97-106. |
Ÿ |
A. Ohashi, T. Sogabe, T. S. Usuda, gFast block diagonalization of (k, k')-pentadiagonal matricesh, Int. J. Pure and Appl. Math., 106 (2016), pp. 513-523. |
Ÿ |
C. M. da Fonseca, T. Sogabe, F. Yilmaz, gLower k-Hessenberg matrices and k-Fibonacci, Fibonacci-p and Pell (p,i) numbersh, Gen. Math. Notes, 31 (2015), pp. 10-17. |
Ÿ |
A. Ohashi, T. Sogabe, gOn computing maximum/minimum singular values of a generalized tensor sumh, Electron. Trans. Numer. Anal., 43 (2015), pp. 244-254. |
Ÿ |
A. Ohashi, T. S. Usuda, T. Sogabe, F. Yilmaz, gOn tensor product decomposition of k-tridiagonal Toeplitz matricesh, Int. J. Pure and Appl. Math., 103 (2015), pp. 537-545. |
Ÿ |
A. Ohashi, T. Sogabe, T. S. Usuda, gOn decomposition of k-tridiagonal l-Toeplitz matrices and its applicationsh, Special Matrices, 3 (2015), pp. 200-206. |
Ÿ |
J. Jia, T. Sogabe, S. Li, gA generalized symbolic Thomas algorithm for the solution of opposite-bordered tridiagonal linear systemsh, J. Comput. Appl. Math., 290 (2015), pp. 423-432. |
Ÿ |
C. Wen, T.-Z. Huang, T. Sogabe, gAn extension of two conjugate direction methods to Markov chain problemsh, Computing and Informatics, 34 (2015), pp. 1001-1022. |
Ÿ |
L. Du, T. Sogabe, S.-L. Zhang, gIDR(s) for solving shifted nonsymmetric linear systemsh, J. Comput. Appl. Math., 274 (2015), pp. 35-43. |
Ÿ |
X.-M. Gu, T.-Z. Huang, L. Li, H.-B. Li, T Sogabe, M. Clemens, gQuasi-minimal residual variants of the COCG and COCR methods for complex symmetric linear systems in electromagnetic simulationsh IEEE Trans. Microw. Theory Techn., 62 (2014), pp. 2859-2867. |
Ÿ |
T. Sogabe, F. Yilmaz, gA note on a fast breakdown-free algorithm for computing the determinants and the permanents of k-tridiagonal matricesh Appl. Math. Comput., 249 (2014), pp. 98-102. |
Ÿ |
F. Yilmaz, T. Sogabe, gA note on symmetric k-tridiagonal matrix family and the Fibonacci numbersh, Int. J. Pure and Appl. Math., 96 (2014), pp. 289-298. |
Ÿ |
X.-M. Gu, T.-Z. Huang, J. Meng, T. Sogabe, H.-B. Li, L. Li, gBiCR-type methods for families of shifted linear systemsh, Comput. Math. Appl., 68 (2014), pp. 746-758. |
Ÿ |
L. Du, T. Sogabe, S.-L. Zhang, gAn algorithm for solving nonsymmetric penta-diagonal Toeplitz linear systems, Appl. Math. Comput., 244 (2014) pp. 10-15. |
Ÿ |
D. J. Lee, T. Miyata, T. Sogabe, T. Hoshi, S.-L. Zhang, gAn interior eigenvalue problem from electronic structure calculationsh, Japan J. Ind. Appl. Math., 30 (2013), pp. 625-633 |
Ÿ |
J. Jia, T. Sogabe, gOn particular solution of ordinary differential equations with constant coefficientsh, Appl. Math. Comput., 219 (2013), pp. 6761-6767. |
Ÿ |
J. Jia, T. Sogabe, gA novel algorithm for solving quasi penta-diagonal linear systemshC J. Math. Chem., 51 (2013), pp. 881-889. |
Ÿ |
A. Imakura, T. Sogabe, S.-L. Zhang, gAn efficient variant of the restarted shifted GMRES for solving shifted linear systemsh, J. Math. Res. Appl., 33 (2013), pp. 127-141. |
Ÿ |
J. Jia, T. Sogabe, M.E.A. El-Mikkawy, gInversion of k-tridiagonal matrices with Toeplitz structureh, Comput. Math. Appl., 65 (2013), pp. 116-125 |
Ÿ |
J. Jia, T. Sogabe, gA novel algorithm and its parallelization for solving nearly penta-diagonal linear systemsh, Int. J. Comput. Math., 90 (2013), pp. 435-444. |
Ÿ |
T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara,@@@@@@@ @@@@ gSolution of generalized shifted linear systems with complex symmetric matricesh, J. Comput. Phys., 231(2012), pp. 5669-5684. |
Ÿ |
J. Jia, Q. Kong, T. Sogabe, gA fast numerical algorithm for solving nearly penta-diagonal linear systemsh, Int. J. Comput. Math., 89 (2012), pp. 851-860. |
Ÿ |
T. Hoshi, S. Yamamoto, T. Fujiwara, T. Sogabe, S.-L. Zhang, gAn order-N electronic structure theory with generalized eigen-value equations and its application to a ten-million-atom systemh, J. Phys.: Condens. Matter, 24 (2012) 165502, pp. 1-5. |
Ÿ |
J. Jia, Q. Kong, T. Sogabe, gA new algorithm for solving nearly penta-diagonal Toeplitz linear systemsh, Comput. Math. Appl., 63 (2012), pp. 1238-1243. |
Ÿ |
A. Imakura, T. Sogabe, S.-L. ZhangC gAn efficient variant of the GMRES(m) method based on error equationsh East Asia J. on Appl. Math., 2 (2012), pp.19-32. |
Ÿ |
T. Sogabe, M.E.A. El-Mikkawy, gFast block diagonalization of k-tridiagonal matricesh, Appl. Math. Comput., 218 (2011), pp. 2740-2743. |
Ÿ |
L. Du, T. Sogabe, S.-L. Zhang, gA variant of the IDR(s) method with quasi-minimal residual strategyh, J. Comput. Appl. Math. 236 (2011), pp. 621-630. |
Ÿ |
L. Du, T. Sogabe, B. Yu, Y. Yamamoto, S.-L. Zhang, gA block IDR(s) method for nonsymmetric linear systems with multiple right-hand sidesh, J. Comput. Appl. Math., 235 (2011), pp. 4095-4106. |
Ÿ |
H. Teng, T. Fujiwara, T. Hoshi, T. Sogabe, S.-L. Zhang, S. Yamamoto, gEfficient and accurate linear algebraic methods for large-scale electronic structure calculations with non-orthogonal atomic orbitalsh, Phys. Rev. B 83, 165103 (2011), pp. 1-12. |
Ÿ |
T. Sogabe, S.-L. Zhang,@@@@@@@ @@@@@@ gAn extension of the COCR method to solving shifted linear systems with complex symmetric matricesh, East Asia J. on Appl. Math., 1 (2011), pp. 97-107. |
Ÿ |
Y. Mizuno, K. Ohi, T. Sogabe, Y. Yamamoto, Y. Kaneda,@@@@@@@ gFour-point correlation function of a passive scalar field in rapidly fluctuating turbulence: Numerical analysis of an exact closure equation h, Phys. Rev. E 82, 036316 (2010), pp.1-9. |
Ÿ |
M.E.A. El-Mikkawy, T. Sogabe, gA new family of k-Fibonacci numbersh, Appl. Math. Comput. 215 (2010), pp. 4456-4461. |
Ÿ |
M.E.A. El-Mikkawy, T. Sogabe, gNotes on particular symmetric polynomials with applicationsh, Appl. Math. Comput., 215 (2010), pp. 3311-3317. |
Ÿ |
T. Fujiwara, T. Hoshi, S. Yamamoto, T. Sogabe, S.-L. Zhang, @@@@ @ gA novel algorithm of large-scale simultaneous linear equationsh, J. Phys.: Condens. Matter, 22 (2010), 074206, pp. 1-6. |
Ÿ |
Y.-F. Jing, T.-Z. Huang, Y. Zhang, L. Li,
G.-H. Cheng, Z.-G. Ren, Y. Duan, T. Sogabe, B. Carpentieri, @@@@@@@ gLanczos-type variants of the COCR method for complex nonsymmetric linear systemsh, J. Comput. Phys., 228 (2009), pp. 6376-6394. |
Ÿ |
T. Sogabe, M.E.A. El-MikkawyC @@@@@@@ @@@@ gOn a problem related to the Vandermonde determinanth, Discrete Appl. Math., 157 (2009), pp. 2997-2999. |
Ÿ |
A. Imakura, T. Sogabe, S.-L. ZhangC @@@@@@@ @ gAn implicit wavelet sparse approximate inverse preconditioner using block finger patternh, Numer. Linear Algebra. Appl., 16 (2009), pp.915-928. |
Ÿ |
T. Sogabe, M. Sugihara, S.-L. Zhang, @@@@@@@@@@@@@@@@ gAn extension of the conjugate residual method to nonsymmetric linear systemsh, J. Comput. Appl. Math., 226 (2009), pp. 103-113. |
Ÿ |
T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara, @@@@@@ gOn a weighted quasi-residual minimization strategy for solving complex symmetric shifted linear systemsh, Electron. Trans. Numer. Anal., 31 (2008), pp. 126-140. |
Ÿ |
S. Yamamoto, T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara, @ gShifted COCG method and its application to double orbital extended Hubbard modelh, J. Phys. Soc. Jpn., Vol. 77, No. 11, 114713 (2008), pp. 1-8. @@@@@ |
Ÿ |
T. Sogabe, @@@@@@@@@@@@@@@@ gNew algorithms for solving periodic tridiagonal and periodic pentadiagonal linear systemsh, Appl. Math. Comput., 202 (2008), pp. 850-856. |
Ÿ |
T. Sogabe,@@@@@@@ @@@@@@ gA note on gA fast numerical algorithm for the determinant of a pentadiagonal matrixhh, Appl. Math. Comput., 201 (2008), pp. 561-564. |
Ÿ |
T. Sogabe,@@@@@@@ @@@@@@ gNumerical algorithms for solving comrade linear systems based on tridiagonal solversh, Appl. Math. Comput., 198 (2008), pp. 117-122. |
Ÿ |
T. Sogabe,@@@@@@@ @@@@@@ gA fast numerical algorithm for the determinant of a pentadiagonal matrixh, Appl. Math. Comput., 196 (2008), pp. 835-841. |
Ÿ |
T. Sogabe,@@ gOn a two-term recurrence for the determinant of a general matrixh, Appl. Math. Comput., 187 (2007), pp. 785-788. |
Ÿ |
T. Sogabe, S.-L. Zhang, gA COCR method for solving complex symmetric linear systemsh, J. Comput. Appl. Math., 199 (2007), pp. 297-303. |
Ÿ |
R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang, T. Fujiwara,@@ gLinear algebraic calculation of Green's function for large-scale electronic structure theoryh, Phys. Rev. B 73, 165108 (2006), pp. 1-9. |
Ÿ |
—›“Œ’¿C‘]‰ä•”’mLC‹{•—E“oC’£Ð—ÇC gŽw’è”Ô–Ú‚Ì“ÁˆÙ’l‚Æ“ÁˆÙƒxƒNƒgƒ‹‚ÌŒvŽZ‚ɂ‚¢‚ÄúWC@@ “ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD29CNoD1C2019Cpp. 121-140D |
Ÿ |
—§‰ª•¶—C‘]‰ä•”’mLC‹{•—E“oC’£Ð—ÇC g“ñdŽw”ŠÖ”Œ^”’lÏ•ªŒöŽ®‚ð—p‚¢‚½s—ñŽÀ”æ‚ÌŒvŽZúWC@@ “ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD28CNoD3C2018Cpp. 142-161D |
Ÿ |
‹{•—E“o, ‘]‰ä•”’mL, ’£Ð—Ç, g”÷•ª•û’öŽ®‚ɑ΂·‚é—£ŽUŒù”z–@‚ÉŠî‚ÂüŒ`•û’öŽ®‚Ì”’l‰ð–@‚̶¬úW, “ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD27CNoD3C2017CppD239-249D |
Ÿ |
¡‘q‹ÅC—kωhC‘]‰ä•”’mLC’£Ð—ÇC gƒfƒtƒŒ[ƒVƒ‡ƒ“Œ^‚ÆLook-Back Œ^‚̃ŠƒXƒ^[ƒg ‚𕹗p‚µ‚½GMRES(m) –@‚ÌŽû‘©“Á«úW, “ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD22CNoD3C2012CppD117-141D |
Ÿ |
¡‘q‹ÅC‘]‰ä•”’mLC’£Ð—ÇC g”ñ‘ÎÌüŒ`•û’öŽ®‚Ì‚½‚ß‚ÌLook-Back GMRES(m) –@h “ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD22CNoD1C2012Cpp. 1-21D |
Ÿ |
ŽR‰º’B–çC‹{“clŽjC‘]‰ä•”’mLC¯Œ’•vC“¡Œ´‹B•vC’£Ð—ÇC gˆê”ʉ»ŒÅ—L’l–â‘è‚ɑ΂·‚éArnoldi(M,W,G)–@hC “ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD21CNoD3C2011Cpp. 241-254D |
Ÿ |
‹{“clŽjC‘]‰ä•”’mLC’£Ð—ÇC gJacobi-Davidson –@‚É‚¨‚¯‚éC³•û’öŽ®‚̉ð–@ |ŽË‰e‹óŠÔ‚É‚¨‚¯‚é Krylov •”•ª‹óŠÔ‚̃Vƒtƒg•s•Ï«‚ÉŠî‚¢‚Ä| hC “ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD20CNoD2C2010Cpp. 115-129D |
Ÿ |
‹{“clŽjC“máûC‘]‰ä•”’mLCŽR–{—LìC’£Ð—ÇC g‘½d˜AŒ‹—̈æ‚̌ŗL’l–â‘è‚ɑ΂·‚é Sakurai-Sugiura –@‚ÌŠg’£hC “ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD19CNoD4C2009CppD537-550D |
Ÿ |
¡‘q‹ÅC‘]‰ä•”’mLC’£Ð—ÇC @ @@@@@@@ @ gGMRES(m)–@‚̃ŠƒXƒ^[ƒg‚ɂ‚¢‚ÄhC “ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD19CNoD4C2009CppD551-564D |
Ÿ |
‘O“cË•ºCˆ¢•”–M”üC‘]‰ä•”’mLC’£Ð—ÇC @@@@@@ gAOR–@‚ð—p‚¢‚½‰Â•Ï“I‘Oˆ—•t‚«ˆê”ʉ»‹¤–ðŽc·–@hC @@@@@@@@@@@@@ “ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD18CNoD1C2008CppD155-170D |
Ÿ |
¡‘q‹ÅC‘]‰ä•”’mLC’£Ð—ÇC @@@@@@ @@@@@@ gFinger pattern‚̃uƒƒbƒN‰»‚É‚æ‚é‰A“Iwavelet‹ßŽ—‹ts—ñ‘Oˆ—‚Ì‚‘¬‰»hC@@@ “ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD17CNoD4C2007CppD523-542D |
Ÿ |
“삳‚‚«C‘]‰ä•”’mLC™Œ´³èûC’£Ð—ÇC gBi-CR–@‚ւ̀ŬŽc·ƒAƒvƒ[ƒ`‚Ì“K—p‚ɂ‚¢‚ÄhC “ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD17CNoD3C2007CppD301-317D |
Ÿ |
ˆ¢•”–M”üC‘]‰ä•”’mLC“¡–ì´ŽŸC’£Ð—ÇC@@ g”ñ‘ÎÌs—ñ—p‹¤–ðŽc·–@‚ÉŠî‚Âό^”½•œ‰ð–@hC î•ñˆ—Šw‰ï˜_•¶ŽuƒRƒ“ƒsƒ…[ƒeƒBƒ“ƒOƒVƒXƒeƒ€vCVolD48CNoDSIG 8 (ACS18)C2007CppD11-21D |
Ÿ |
‘]‰ä•”’mLC™Œ´³èûC’£Ð—ÇC g‹¤–ðŽc·–@‚Ì”ñ‘ÎÌs—ñ—p‚Ö‚ÌŠg’£hC “ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD15CNoD3C2005CppD445-459D |
Ÿ |
‘]‰ä•”’mLC“A”gC‹´–{NC’£Ð—ÇC g”ñ‘ÎÌToeplitzs—ñ‚Ì‚½‚ß‚Ì’uŠ·s—ñ‚É‚æ‚é‘Oˆ—hC “ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD15CNoD2C2005CppD159-168D |
Ÿ |
‘]‰ä•”’mLC‹à¬ŠCCˆ¢•”–M”üC’£Ð—ÇC gCGS–@‚̉ü—ǂɂ‚¢‚ÄhC “ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD14CNoD1C2004CppD1-12D |
Ÿ |
K. Nakano, T. Kemmochi, Y. Miyatake, T. Sogabe, S.-L. Zhang, gModified Strang splitting for semilinear parabolic problemsh, JSIAM Letters, 11 (2019), pp. 77-80. |
Ÿ |
S. Mizuno, Y. Moriizumi, T. S. Usuda, and T. Sogabe, gAn initial guess of Newton's method for the matrix square root based on a sphere constrained optimization problemh, JSIAM Letters, 8 (2016), pp. 17-20. |
Ÿ |
L. Du, T. Sogabe and S.-L. Zhang gQuasi-minimal residual smoothing technique for the IDR(s) methodh, JSIAM Letters, 3 (2011), pp. 13-16. |
Ÿ |
A. Imakura, T. Sogabe, and S.-L. Zhang, gA Modification of Implicit Wavelet Sparse Approximate Inverse Preconditioner Based on a Block Finger Patternh, in: Frontiers of Computational Science 2008, eds. Y. Kaneda, M. Sasai, and K. Tachibana, Nagoya University, 2008, pp. 271-278. |
Ÿ |
T. Sogabe and S.-L. Zhang, (Invited Paper) gNumerical algorithms for solving shifted complex symmetric linear systemh, in: Proceedings of the National Institute for Mathematical Sciences, Vol. 3, No. 9, (2008), pp. 145-158. |
Ÿ |
T. Sogabe, T. Hoshi, S.-L. Zhang, and T. Fujiwara On an application of the QMR_SYM method to complex symmetric shifted linear systems PAMM: Proc. Appl. Math. Mech. 7, (2007), pp. 2020081-2020082. |
Ÿ |
T. Sogabe, T. Hoshi, S.-L. Zhang, and T. Fujiwara, (Invited Paper) gA numerical method for calculating the Green's function arising from electronic structure theoryh, in: Frontiers of Computational Science, eds. Y. Kaneda, H. Kawamura and M. Sasai, Springer-Verlag, Berlin/Heidelberg, 2007, pp. 189-195. |
Ÿ |
T. Sogabe and S.-L. Zhang, (Invited Paper) gAn iterative method based on an A-biorthogonalization process for nonsymmetric linear systemsh, in: Proceedings of The 7th China-Japan Seminar on Numerical Mathematics, eds. Z.-C. Shi and H. Okamoto, Science Press, Beijing, 2006, pp. 120-130. |
Ÿ |
T. Sogabe and S.-L. Zhang, (Invited Lecture) gExtended conjugate residual methods for solving nonsymmetric linear systemsh, in: Numerical Linear Algebra and Optimization, ed. Y. Yuan, Science Press, Beijing/NewYork, 2004, pp. 88-99. |
Ÿ |
‘å‹´‚ ‚·‚©C‘]‰ä•”’mLC uŠg’£ƒeƒ“ƒ\ƒ‹˜a‚ɑ΂·‚éÅ‘åEŬ“ÁˆÙ’lŒvŽZ `”’l‘½düŒ`‘㔂©‚ç‚̃Aƒvƒ[ƒ`` vC ‹ž“s‘åŠw”—‰ðÍŒ¤‹†Šu‹†˜^1957CuVŽž‘ã‚̉Ȋw‹Zp‚ðŒ¡ˆø‚·‚é”’l‰ðÍŠwvC2015.7C ppD38-44D |
Ÿ |
¡‘q‹ÅC ‘]‰ä•”’mLC’£Ð—ÇC uƒVƒtƒgÌüŒ`•û’öŽ®‚ɑ΂·‚郊ƒXƒ^[ƒg•t‚«Shifted Krylov•”•ª‹óŠÔ–@‚ɂ‚¢‚ÄvC ‹ž“s‘åŠw”—‰ðÍŒ¤‹†Šu‹†˜^1791Cu‰ÈŠw‹ZpŒvŽZ‚É‚¨‚¯‚é—˜_‚Ɖž—p‚ÌV“WŠJvC2012.4C ppD47-56D |
Ÿ |
T. Miyata, T. Sogabe, and S.-L. Zhang, gOn the convergence of the Jacobi-Davidson method based on a shift invariance propertyhC RIMS Kokyuroku 1733, Mathematical foundation and development of algorithms for scientific computingC2011.3, pp. 78-84. |
Ÿ |
T. Sogabe, T. Hoshi, S.-L. ZhangCand T. Fujiwara, gA fast numerical method for generalized shifted linear systems with complex symmetric matriceshC RIMS Kokyuroku 1719, Recent Developments of Numerical Analysis and Numerical Computation ALgorithmsC2010.11, pp. 106-117. |
Ÿ |
T. Sogabe and S.-L. ZhangC gOn the use of the QMR SYM method for solving complex symmetric shifted linear systemshC RIMS Kokyuroku 1614, High Performance Algorithms for Computational Science and Their ApplicationsC2008.10, pp. 124-135. |
Ÿ |
T. Sogabe and S.-L. Zhang gCRS: a fast algorithm based on Bi-CR for solving nonsymmeric linear systemsh, The First China-Japan-Korea Joint Conference on Numerical Mathematics & The Second East Asia SIAM Symposium, Hokkaido University Technical Report Series in Mathematics (–kŠC“¹‘åŠw”Šwu‹†˜^), 112(2006), pp. 15-18. |
Ÿ |
–Ø‘º‹ÓŽiC•½–ìÆ”äŒÃC‰¬“c•ŽjCŽRàVGŽ÷C‘]‰ä•”’mLC‰¡ŽR˜aOC uReal Root Counting‚ÉŠÖ‚·‚é˜b‘èvC ‹ž“s‘åŠw”—‰ðÍŒ¤‹†Šu‹†˜^1456CuCA-ALIASvC2005.11CppD180-187D |
Ÿ |
’·’JìG•FC‘]‰ä•”’mLC‰¬“c •ŽjC u”ñ‘ÎÌs—ñ‚©‚綬‚³‚ꂽ‘ÎÌs—ñ‚ɑ΂·‚éCG –@vC ‹ž“s‘åŠw”—‰ðÍŒ¤‹†Šu‹†˜^1362Cu”’l‰ðÍ‚ÆV‚µ‚¢î•ñ‹ZpvC 2004.4C ppD6-12D |
Ÿ |
‘]‰ä•”’mLC’£Ð—ÇC uBi-CR–@‚ÌÏŒ^‰ð–@‚ɂ‚¢‚ÄvC ‹ž“s‘åŠw”—‰ðÍŒ¤‹†Šu‹†˜^1362Cu”’l‰ðÍ‚ÆV‚µ‚¢î•ñ‹ZpvC2004.4CppD22-30D |
Ÿ |
‘]‰ä•”’mLC“¡–ì´ŽŸC’£Ð—ÇC uCOCG–@‚ÌÏŒ^‰ð–@‚ɂ‚¢‚ÄvC ‹ž“s‘åŠw”—‰ðÍŒ¤‹†Šu‹†˜^1320Cu”÷•ª•û’öŽ®‚Ì”’l‰ð–@‚ÆüŒ`ŒvŽZvC2003.5CppD201-211D |
Ÿ |
—§‰ª•¶—C‘]‰ä•”’mLC’£Ð—ÇC ”’lÏ•ª‚ÉŠî‚Âs—ñŽÀ”æ‚ÌŒvŽZ‚ɂ‚¢‚ÄC ŒvŽZ”—HŠwƒŒƒrƒ…[, Vol. 2019-2 (2019), pp. 45-55. |
Ÿ |
‘]‰ä•”’mLC ’£Ð—ÇC @@@ ‘å‹K–̓VƒtƒgüŒ`•û’öŽ®‚Ì”’l‰ð–@|ƒNƒŠƒƒt•”•ª‹óŠÔ‚Ì«Ž¿‚É’…–Ú‚µ‚Ä|C ‰ž—p”—CVol. 19CNo. 3C2009CppD27-42D |
Ÿ |
‘]‰ä•”’mL ‚Æ‚Ñ‚ç‚ÌŒ¾—t “ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVol. 24, No. 1, 2014, p.1. |
Ÿ |
‘]‰ä•”’mL @@@ Šª“ªŒ¾C ‰ž—p”—CVol. 34CNo. 4C2024Cp.1D |
@@ Krylov Subspace Methods for Linear Systems —Principles of Algorithms Spiringer Series in Computational Mathematics, Springer, 2023D |
@@ w20¢‹I‚̃gƒbƒv10ƒAƒ‹ƒSƒŠƒYƒ€x i‹à“cs—YEùˆä—¶ ŠÄCC’£Ð—Ç •ÒjCŒvŽZ‰ÈŠwuÀC‹¤—§o”ÅC2022D @@u3ÍFüŒ`•û’öŽ®‚Ì‚½‚߂̃NƒŠƒƒt•”•ª‹óŠÔ–@v |
|
@@ wŒvŽZ‰ÈŠw‚Ì‚½‚ß‚ÌŠî–{”—ƒAƒ‹ƒSƒŠƒYƒ€x i‹à“cs—YEùˆä—¶ ŠÄCC’£Ð—Ç •ÒjCŒvŽZ‰ÈŠwuÀC‹¤—§o”ÅC2019D @@u2ÍFüŒ`•û’öŽ®vCu5ÍF”ñüŒ`•û’öŽ®vCu6ÍFŠÖ”‹ßŽ—vC @@u8ÍF”’lÏ•ªvC@u9ÍFí”÷•ª•û’öŽ®vCu10ÍF•Î”÷•ª•û’öŽ®v | |
w”’lüŒ`‘㔂̔—‚ÆHPCxiŸNˆä“S–çC¼”ö‰F‘×C•Ð‹ËF—m •ÒjC‹¤—§o”ÅC2018D @@u4ÍFs—ñŠÖ”‚Ì”’lŒvŽZ–@v @@ | |
@iƒnƒ“ƒhƒuƒbƒNj w21st Century Nanoscience - A Handbookx(Klaus D. Sattler ed.), CRC Press, 2020D @@uKrylov solversv‚Ì€–ÚiChap:15, pp. 8-10 j |
|
@iƒnƒ“ƒhƒuƒbƒNj w‰ž—p”—ƒnƒ“ƒhƒuƒbƒNxiŽF–€‡‹gC‘åÎiˆêC™Œ´³èû •ÒjC’©‘q‘“XC2013D @@u˜A—§1ŽŸ•û’öŽ®‚ɑ΂·‚é’¼Ú‰ð–@v‚Ì€–ÚCppD408-411D @@u˜A—§1ŽŸ•û’öŽ®‚ɑ΂·‚锽•œ‰ð–@v‚Ì€–ÚCppD412-415D |