Œ¤‹†‹ÆÑ i˜_•¶E‰ðàE’˜‘“™ƒŠƒXƒgj

(ƒe[ƒ}•Ê‚̘_•¶ƒŠƒXƒg )


ŠwpŽGŽ
Ÿ Y. Miyatake and T. Sogabe,
gAdaptive projected SOR algorithms for nonnegative quadratic programmingh,
Japan J. Ind. Appl. Math., (accepted)
Ÿ F. Tatsuoka, T. Sogabe, T. Kemmochi, S.-L. Zhang,
gComputing the matrix exponential with the double exponential formulah,
Special Matrices (accepted)
Ÿ Y. Satake, T. Sogabe, T. Kemmochi, S.-L. Zhang,
gMatrix equation representation of the convolution equation and its unique solvabilityh,
Special Matrices (accepted)
Ÿ R. Zhao, T. Sogabe, T. Kemmochi, S.-L. Zhang,
"Shifted LOPBiCG: A locally orthogonal product-type method for solving nonsymmetric shifted linear systems based on Bi-CGSTAB",
Numer. Linear Algebra. Appl., 31(2024), e2538.
Ÿ J. Niu, T. Sogabe, L. Du, T. Kemmochi, S.-L. Zhang,
"Tensor product-type methods for solving Sylvester tensor equations",
Appl. Math. Compute, 457 (2023), 128155.
Ÿ E. Miyazaki, T. Kemmochi, T. Sogabe, S.-L. Zhang,
"A structure-preserving numerical method for the fourth-order geometric evolution equations for planar curves",
Commun. Math. Res., 39 (2023), pp. 296-330.
Ÿ S. Takahira, A. Ohashi, T. Sogabe, T. S. Usuda,
gQuantum algorithms based on the block-encoding framework for matrix functions by contour integralsh,
Quantum Inform. Comput., 22 (2022), pp. 965-979.
Ÿ A. Ohashi, T. Sogabe,
gRecent development for computing singular values of a generalized tensor sumh,
J. Adv. Simul. Sci. Eng. (JASSE), 9 (2022), pp. 136-149.
Ÿ F. Tatsuoka, T. Sogabe, Y. Miyatake, T. Kemmochi, S.-L. Zhang,
gComputing the matrix fractional power based on the double exponential formulah,
Electron. Trans. Numer. Anal., 54 (2021), pp. 558-580.
Ÿ A. Ohashi, T. Sogabe,
gNumerical algorithms for computing an arbitrary singular value of a tensor sumh,
Axioms 10 (2021), 211. (14pp.)
Ÿ T. Hoshi, M. Kawamura, K. Yoshimi, Y. Motoyama, T. Misawa, Y. Yamaji, S. Todo, N. Kawashima, T. Sogabe,
gKƒÖ -- Open-source library for the shifted Krylov subspace methodh,
Comput. Phys. Commun., 258 (2021), 107536.
Ÿ K.-I. Ishikawa, T. Sogabe,
gA thick-restart Lanczos type method for Hermitian J-symmetric eigenvalue problemsh,
Japan J. Ind. Appl. Math., 38 (2021), pp. 233-256.
Ÿ J. Jia, T. Sogabe,
gGeneralized Sherman-Morrison-Woodbury formula based algorithm for the inverses of opposite-bordered tridiagonal matricesh,
J. Math. Chem., 58 (2020), pp. 1466-1480.
Ÿ T. Sogabe, A. Suzuki, S.-L. Zhang,
gAn implicit evaluation method of vector 2-norms arising from sphere constrained quadratic optimizationsh,
CSIAM Trans. Appl. Math., 1 (2020), pp. 142-154 (Invited)
Ÿ S. Takahira, A. Ohashi, T. Sogabe, T. S. Usuda,
gQuantum algorithm for matrix functions by Cauchy's integral formulah,
Quantum Inform. Comput., 20:1-2 (2020), pp. 14-36.
Ÿ Y. Satake, T. Sogabe, T. Kemmochi, S.-L. Zhang,
gOn a transformation of the *-congruence Sylvester equation for the least squares optimizationh,
Optim. Methods & Softw., 35 (2020), pp. 974-981.
Ÿ F. Tatsuoka, T. Sogabe, Y. Miyatake, S.-L. Zhang,
gAlgorithms for the computation of the matrix logarithm based on the double exponential formulah,
J. Comput. Appl. Math., 373 (2020), 112396.
Ÿ Y. Miyatake, T. Sogabe, S.-L. Zhang,
gAdaptive SOR methods based on the Wolfe conditionsh,
Numer. Algorithms, 84 (2020), pp. 117-132.
Ÿ Y. Miyatake, T. Nakagawa, T. Sogabe, S.-L. Zhang,
gA structure-preserving Fourier pseudo-spectral linearly implicit scheme for the space-fractional nonlinear Schrödinger equationh,
J. Comput. Dyn., 6 (2019), pp. 361-383.
Ÿ A. Ohashi, T. Sogabe,
gOn computing the minimum singular value of a tensor sumh,
Special Matrices, 7 (2019), pp. 95-106.
Ÿ Y. Satake, M. Oozawa, T. Sogabe, Y. Miyatake, T. Kemmochi, S.-L. Zhang,
gRelation between the T-congruence Sylvester equation and the generalized Sylvester equationh,
Appl. Math. Lett., 96 (2019), pp. 7-13.
Ÿ S. Takahira, T. Sogabe, T. S. Usuda,
gBidiagonalization of (k, k + 1)-tridiagonal matricesh,
Special Matrices, 7 (2019), pp. 20-26.
Ÿ D. Lee, T. Hoshi, T. Sogabe, Y. Miyatake, S.-L. Zhang,
gSolution of the k-th eigenvalue problem in large-scale electronic structure calculationsh,
J. Comput. Phys., 371 (2018), pp. 618-632.
Ÿ A. Imakura, T. Sogabe, S.-L. Zhang,
gA look-back-type restart for the restarted Krylov subspace methods for solving non-Hermitian linear systemsh,
Japan J. Ind. Appl. Math., 35 (2018), pp. 835-859.
Ÿ Y. Miyatake, T. Sogabe, S.-L. Zhang,
gOn the equivalence between SOR-type methods for linear systems and the discrete gradient methods for gradient systemsh,
J. Comput. Appl. Math., 342 (2018), pp. 58-69.
Ÿ K. Ooi, Y. Mizuno, T. Sogabe, Y. Yamamoto, S.-L. Zhang,
gSolution of a nonlinear eigenvalue problem using signed singular valuesh,
East Asia J. on Appl. Math., 7 (2018), pp. 799-809.
Ÿ L. Du, T. Sogabe, S.-L. Zhang,
gA fast algorithm for solving tridiagonal quasi-Toeplitz linear systemsh,
Appl. Math. Lett., 75 (2018), pp. 74-81.
Ÿ M. Oozawa, T. Sogabe, Y. Miyatake, S.-L. Zhang,
gOn a relationship between the T-congruence sylvester equation and the Lyapunov equationh,
J. Comput. Appl. Math., 329 (2018), pp. 51-56.
Ÿ F. Yilmaz, T. Sogabe, E. Kirklar,
gOn the pfaffians and determinants of some skew-centrosymmetric matricesh,
J. Integer Sequences, 20 (2017), pp. 1-9.
Ÿ Y. Miyatake, G. Eom, T. Sogabe, S.-L. Zhang,
gEnergy-preserving H1-Galerkin schemes for the Hunter-Saxton equationh,
J. Math. Res. Appl., 37 (2017), pp. 107-118.
Ÿ F. Tatsuoka, T. Sogabe, Y. Miyatake, S.-L. Zhang
gA cost-efficient variant of the incremental Newton iteration for the matrix pth rooth,
J. Math. Res. Appl., 37 (2017), pp. 97-106.
Ÿ A. Ohashi, T. Sogabe, T. S. Usuda,
gFast block diagonalization of (k, k')-pentadiagonal matricesh,
Int. J. Pure and Appl. Math., 106 (2016), pp. 513-523.
Ÿ C. M. da Fonseca, T. Sogabe, F. Yilmaz,
gLower k-Hessenberg matrices and k-Fibonacci, Fibonacci-p and Pell (p,i) numbersh,
Gen. Math. Notes, 31 (2015), pp. 10-17.
Ÿ A. Ohashi, T. Sogabe,
gOn computing maximum/minimum singular values of a generalized tensor sumh,
Electron. Trans. Numer. Anal., 43 (2015), pp. 244-254.
Ÿ A. Ohashi, T. S. Usuda, T. Sogabe, F. Yilmaz,
gOn tensor product decomposition of k-tridiagonal Toeplitz matricesh,
Int. J. Pure and Appl. Math., 103 (2015), pp. 537-545.
Ÿ A. Ohashi, T. Sogabe, T. S. Usuda,
gOn decomposition of k-tridiagonal l-Toeplitz matrices and its applicationsh,
Special Matrices, 3 (2015), pp. 200-206.
Ÿ J. Jia, T. Sogabe, S. Li,
gA generalized symbolic Thomas algorithm for the solution of opposite-bordered tridiagonal linear systemsh,
J. Comput. Appl. Math., 290 (2015), pp. 423-432.
Ÿ C. Wen, T.-Z. Huang, T. Sogabe,
gAn extension of two conjugate direction methods to Markov chain problemsh,
Computing and Informatics, 34 (2015), pp. 1001-1022.
Ÿ L. Du, T. Sogabe, S.-L. Zhang,
gIDR(s) for solving shifted nonsymmetric linear systemsh,
J. Comput. Appl. Math., 274 (2015), pp. 35-43.
Ÿ X.-M. Gu, T.-Z. Huang, L. Li, H.-B. Li, T Sogabe, M. Clemens,
gQuasi-minimal residual variants of the COCG and COCR methods for complex symmetric linear systems in electromagnetic simulationsh
IEEE Trans. Microw. Theory Techn., 62 (2014), pp. 2859-2867.
Ÿ T. Sogabe, F. Yilmaz,
gA note on a fast breakdown-free algorithm for computing the determinants and the permanents of k-tridiagonal matricesh
Appl. Math. Comput., 249 (2014), pp. 98-102.
Ÿ F. Yilmaz, T. Sogabe,
gA note on symmetric k-tridiagonal matrix family and the Fibonacci numbersh,
Int. J. Pure and Appl. Math., 96 (2014), pp. 289-298.
Ÿ X.-M. Gu, T.-Z. Huang, J. Meng, T. Sogabe, H.-B. Li, L. Li,
gBiCR-type methods for families of shifted linear systemsh,
Comput. Math. Appl., 68 (2014), pp. 746-758.
Ÿ L. Du, T. Sogabe, S.-L. Zhang,
gAn algorithm for solving nonsymmetric penta-diagonal Toeplitz linear systems,
Appl. Math. Comput., 244 (2014) pp. 10-15.
Ÿ D. J. Lee, T. Miyata, T. Sogabe, T. Hoshi, S.-L. Zhang,
gAn interior eigenvalue problem from electronic structure calculationsh,
Japan J. Ind. Appl. Math., 30 (2013), pp. 625-633
Ÿ J. Jia, T. Sogabe,
gOn particular solution of ordinary differential equations with constant coefficientsh,
Appl. Math. Comput., 219 (2013), pp. 6761-6767.
Ÿ J. Jia, T. Sogabe,
gA novel algorithm for solving quasi penta-diagonal linear systemshC
J. Math. Chem., 51 (2013), pp. 881-889.
Ÿ A. Imakura, T. Sogabe, S.-L. Zhang,
gAn efficient variant of the restarted shifted GMRES for solving shifted linear systemsh,
J. Math. Res. Appl., 33 (2013), pp. 127-141.
Ÿ J. Jia, T. Sogabe, M.E.A. El-Mikkawy,
gInversion of k-tridiagonal matrices with Toeplitz structureh,
Comput. Math. Appl., 65 (2013), pp. 116-125
Ÿ J. Jia, T. Sogabe,
gA novel algorithm and its parallelization for solving nearly penta-diagonal linear systemsh,
Int. J. Comput. Math., 90 (2013), pp. 435-444.
Ÿ T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara,@@@@@@@ @@@@
gSolution of generalized shifted linear systems with complex symmetric matricesh,
J. Comput. Phys., 231(2012), pp. 5669-5684.
Ÿ J. Jia, Q. Kong, T. Sogabe,
gA fast numerical algorithm for solving nearly penta-diagonal linear systemsh,
Int. J. Comput. Math., 89 (2012), pp. 851-860.
Ÿ T. Hoshi, S. Yamamoto, T. Fujiwara, T. Sogabe, S.-L. Zhang,
gAn order-N electronic structure theory with generalized eigen-value equations and its application to a ten-million-atom systemh,
J. Phys.: Condens. Matter, 24 (2012) 165502, pp. 1-5.
Ÿ J. Jia, Q. Kong, T. Sogabe,
gA new algorithm for solving nearly penta-diagonal Toeplitz linear systemsh,
Comput. Math. Appl., 63 (2012), pp. 1238-1243.
Ÿ A. Imakura, T. Sogabe, S.-L. ZhangC
gAn efficient variant of the GMRES(m) method based on error equationsh
East Asia J. on Appl. Math., 2 (2012), pp.19-32.
Ÿ T. Sogabe, M.E.A. El-Mikkawy,
gFast block diagonalization of k-tridiagonal matricesh,
Appl. Math. Comput., 218 (2011), pp. 2740-2743.
Ÿ L. Du, T. Sogabe, S.-L. Zhang,
gA variant of the IDR(s) method with quasi-minimal residual strategyh,
J. Comput. Appl. Math. 236 (2011), pp. 621-630.
Ÿ L. Du, T. Sogabe, B. Yu, Y. Yamamoto, S.-L. Zhang,
gA block IDR(s) method for nonsymmetric linear systems with multiple right-hand sidesh,
J. Comput. Appl. Math., 235 (2011), pp. 4095-4106.
Ÿ H. Teng, T. Fujiwara, T. Hoshi, T. Sogabe, S.-L. Zhang, S. Yamamoto,
gEfficient and accurate linear algebraic methods for large-scale electronic structure calculations with non-orthogonal atomic orbitalsh,
Phys. Rev. B 83, 165103 (2011), pp. 1-12.
Ÿ T. Sogabe, S.-L. Zhang,@@@@@@@ @@@@@@
gAn extension of the COCR method to solving shifted linear systems with complex symmetric matricesh,
East Asia J. on Appl. Math., 1 (2011), pp. 97-107.
Ÿ Y. Mizuno, K. Ohi, T. Sogabe, Y. Yamamoto, Y. Kaneda,@@@@@@@
gFour-point correlation function of a passive scalar field in rapidly fluctuating turbulence: Numerical analysis of an exact closure equation h,
Phys. Rev. E 82, 036316 (2010), pp.1-9.
Ÿ M.E.A. El-Mikkawy, T. Sogabe,
gA new family of k-Fibonacci numbersh,
Appl. Math. Comput. 215 (2010), pp. 4456-4461.
Ÿ M.E.A. El-Mikkawy, T. Sogabe,
gNotes on particular symmetric polynomials with applicationsh,
Appl. Math. Comput., 215 (2010), pp. 3311-3317.
Ÿ T. Fujiwara, T. Hoshi, S. Yamamoto, T. Sogabe, S.-L. Zhang, @@@@ @
gA novel algorithm of large-scale simultaneous linear equationsh,
J. Phys.: Condens. Matter, 22 (2010), 074206, pp. 1-6.
Ÿ Y.-F. Jing, T.-Z. Huang, Y. Zhang, L. Li, G.-H. Cheng, Z.-G. Ren, Y. Duan, T. Sogabe, B. Carpentieri, @@@@@@@
gLanczos-type variants of the COCR method for complex nonsymmetric linear systemsh,
J. Comput. Phys., 228 (2009), pp. 6376-6394.
Ÿ T. Sogabe, M.E.A. El-MikkawyC @@@@@@@ @@@@
gOn a problem related to the Vandermonde determinanth,
Discrete Appl. Math., 157 (2009), pp. 2997-2999.
Ÿ A. Imakura, T. Sogabe, S.-L. ZhangC @@@@@@@ @
gAn implicit wavelet sparse approximate inverse preconditioner using block finger patternh,
Numer. Linear Algebra. Appl., 16 (2009), pp.915-928.
Ÿ T. Sogabe, M. Sugihara, S.-L. Zhang, @@@@@@@@@@@@@@@@
gAn extension of the conjugate residual method to nonsymmetric linear systemsh,
J. Comput. Appl. Math., 226 (2009), pp. 103-113.
Ÿ T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara, @@@@@@
gOn a weighted quasi-residual minimization strategy for solving complex symmetric shifted linear systemsh,
Electron. Trans. Numer. Anal., 31 (2008), pp. 126-140.
Ÿ S. Yamamoto, T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara, @
gShifted COCG method and its application to double orbital extended Hubbard modelh,
J. Phys. Soc. Jpn., Vol. 77, No. 11, 114713 (2008), pp. 1-8. @@@@@
Ÿ T. Sogabe, @@@@@@@@@@@@@@@@
gNew algorithms for solving periodic tridiagonal and periodic pentadiagonal linear systemsh,
Appl. Math. Comput., 202 (2008), pp. 850-856.
Ÿ T. Sogabe,@@@@@@@ @@@@@@
gA note on gA fast numerical algorithm for the determinant of a pentadiagonal matrixhh,
Appl. Math. Comput., 201 (2008), pp. 561-564.
Ÿ T. Sogabe,@@@@@@@ @@@@@@
gNumerical algorithms for solving comrade linear systems based on tridiagonal solversh,
Appl. Math. Comput., 198 (2008), pp. 117-122.
Ÿ T. Sogabe,@@@@@@@ @@@@@@
gA fast numerical algorithm for the determinant of a pentadiagonal matrixh,
Appl. Math. Comput., 196 (2008), pp. 835-841.
Ÿ T. Sogabe,@@
gOn a two-term recurrence for the determinant of a general matrixh,
Appl. Math. Comput., 187 (2007), pp. 785-788.
Ÿ T. Sogabe, S.-L. Zhang,
gA COCR method for solving complex symmetric linear systemsh,
J. Comput. Appl. Math., 199 (2007), pp. 297-303.
Ÿ R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang, T. Fujiwara,@@
gLinear algebraic calculation of Green's function for large-scale electronic structure theoryh,
Phys. Rev. B 73, 165108 (2006), pp. 1-9.


ŠwpŽGŽ
Ÿ —›“Œ’¿C‘]‰ä•”’mLC‹{•—E“oC’£Ð—ÇC
gŽw’è”Ô–Ú‚Ì“ÁˆÙ’l‚Æ“ÁˆÙƒxƒNƒgƒ‹‚ÌŒvŽZ‚ɂ‚¢‚ÄúWC@@
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD29CNoD1C2019Cpp. 121-140D
Ÿ —§‰ª•¶—C‘]‰ä•”’mLC‹{•—E“oC’£Ð—ÇC
g“ñdŽw”ŠÖ”Œ^”’lÏ•ªŒöŽ®‚ð—p‚¢‚½s—ñŽÀ”æ‚ÌŒvŽZúWC@@
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD28CNoD3C2018Cpp. 142-161D
Ÿ ‹{•—E“o, ‘]‰ä•”’mL, ’£Ð—Ç,
g”÷•ª•û’öŽ®‚ɑ΂·‚é—£ŽUŒù”z–@‚ÉŠî‚­üŒ`•û’öŽ®‚Ì”’l‰ð–@‚̶¬úW,
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD27CNoD3C2017CppD239-249D
Ÿ ¡‘q‹ÅC—kωhC‘]‰ä•”’mLC’£Ð—ÇC
gƒfƒtƒŒ[ƒVƒ‡ƒ“Œ^‚ÆLook-Back Œ^‚̃ŠƒXƒ^[ƒg ‚𕹗p‚µ‚½GMRES(m) –@‚ÌŽû‘©“Á«úW,
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD22CNoD3C2012CppD117-141D
Ÿ ¡‘q‹ÅC‘]‰ä•”’mLC’£Ð—ÇC
g”ñ‘ÎÌüŒ`•û’öŽ®‚Ì‚½‚ß‚ÌLook-Back GMRES(m) –@h
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD22CNoD1C2012Cpp. 1-21D
Ÿ ŽR‰º’B–çC‹{“clŽjC‘]‰ä•”’mLC¯Œ’•vC“¡Œ´‹B•vC’£Ð—ÇC
gˆê”ʉ»ŒÅ—L’l–â‘è‚ɑ΂·‚éArnoldi(M,W,G)–@hC
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD21CNoD3C2011Cpp. 241-254D
Ÿ ‹{“clŽjC‘]‰ä•”’mLC’£Ð—ÇC
gJacobi-Davidson –@‚É‚¨‚¯‚éC³•û’öŽ®‚̉ð–@ |ŽË‰e‹óŠÔ‚É‚¨‚¯‚é Krylov •”•ª‹óŠÔ‚̃Vƒtƒg•s•Ï«‚ÉŠî‚¢‚Ä| hC
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD20CNoD2C2010Cpp. 115-129D
Ÿ ‹{“clŽjC“máûC‘]‰ä•”’mLCŽR–{—LìC’£Ð—ÇC
g‘½d˜AŒ‹—̈æ‚̌ŗL’l–â‘è‚ɑ΂·‚é Sakurai-Sugiura –@‚ÌŠg’£hC
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD19CNoD4C2009CppD537-550D
Ÿ ¡‘q‹ÅC‘]‰ä•”’mLC’£Ð—ÇC @ @@@@@@@ @
gGMRES(m)–@‚̃ŠƒXƒ^[ƒg‚ɂ‚¢‚ÄhC
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD19CNoD4C2009CppD551-564D
Ÿ ‘O“cË•ºCˆ¢•”–M”üC‘]‰ä•”’mLC’£Ð—ÇC @@@@@@
gAOR–@‚ð—p‚¢‚½‰Â•Ï“I‘Oˆ—•t‚«ˆê”ʉ»‹¤–ðŽc·–@hC @@@@@@@@@@@@@
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD18CNoD1C2008CppD155-170D
Ÿ ¡‘q‹ÅC‘]‰ä•”’mLC’£Ð—ÇC @@@@@@ @@@@@@
gFinger pattern‚̃uƒƒbƒN‰»‚É‚æ‚é‰A“Iwavelet‹ßŽ—‹ts—ñ‘Oˆ—‚Ì‚‘¬‰»hC@@@
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD17CNoD4C2007CppD523-542D
Ÿ “삳‚‚«C‘]‰ä•”’mLC™Œ´³èûC’£Ð—ÇC
gBi-CR–@‚ւ̀ŬŽc·ƒAƒvƒ[ƒ`‚Ì“K—p‚ɂ‚¢‚ÄhC
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD17CNoD3C2007CppD301-317D
Ÿ ˆ¢•”–M”üC‘]‰ä•”’mLC“¡–ì´ŽŸC’£Ð—ÇC@@
g”ñ‘ÎÌs—ñ—p‹¤–ðŽc·–@‚ÉŠî‚­ό^”½•œ‰ð–@hC
î•ñˆ—Šw‰ï˜_•¶ŽuƒRƒ“ƒsƒ…[ƒeƒBƒ“ƒOƒVƒXƒeƒ€vCVolD48CNoDSIG 8 (ACS18)C2007CppD11-21D
Ÿ ‘]‰ä•”’mLC™Œ´³èûC’£Ð—ÇC
g‹¤–ðŽc·–@‚Ì”ñ‘ÎÌs—ñ—p‚Ö‚ÌŠg’£hC
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD15CNoD3C2005CppD445-459D
Ÿ ‘]‰ä•”’mLC“A”gC‹´–{NC’£Ð—ÇC
g”ñ‘ÎÌToeplitzs—ñ‚Ì‚½‚ß‚Ì’uŠ·s—ñ‚É‚æ‚é‘Oˆ—hC
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD15CNoD2C2005CppD159-168D
Ÿ ‘]‰ä•”’mLC‹à¬ŠCCˆ¢•”–M”üC’£Ð—ÇC
gCGS–@‚̉ü—ǂɂ‚¢‚ÄhC
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVolD14CNoD1C2004CppD1-12D


ƒŒƒ^[˜_•¶@
Ÿ K. Nakano, T. Kemmochi, Y. Miyatake, T. Sogabe, S.-L. Zhang,
gModified Strang splitting for semilinear parabolic problemsh,
JSIAM Letters, 11 (2019), pp. 77-80.
Ÿ S. Mizuno, Y. Moriizumi, T. S. Usuda, and T. Sogabe,
gAn initial guess of Newton's method for the matrix square root based on a sphere constrained optimization problemh,
JSIAM Letters, 8 (2016), pp. 17-20.
Ÿ L. Du, T. Sogabe and S.-L. Zhang
gQuasi-minimal residual smoothing technique for the IDR(s) methodh,
JSIAM Letters, 3 (2011), pp. 13-16.



Proceedings (Refereed)
Ÿ A. Imakura, T. Sogabe, and S.-L. Zhang,
gA Modification of Implicit Wavelet Sparse Approximate Inverse Preconditioner Based on a Block Finger Patternh,
in: Frontiers of Computational Science 2008, eds. Y. Kaneda, M. Sasai, and K. Tachibana, Nagoya University, 2008, pp. 271-278.
Ÿ T. Sogabe and S.-L. Zhang, (Invited Paper)
gNumerical algorithms for solving shifted complex symmetric linear systemh,
in: Proceedings of the National Institute for Mathematical Sciences, Vol. 3, No. 9, (2008), pp. 145-158.
Ÿ T. Sogabe, T. Hoshi, S.-L. Zhang, and T. Fujiwara
On an application of the QMR_SYM method to complex symmetric shifted linear systems
PAMM: Proc. Appl. Math. Mech. 7, (2007), pp. 2020081-2020082.
Ÿ T. Sogabe, T. Hoshi, S.-L. Zhang, and T. Fujiwara, (Invited Paper)
gA numerical method for calculating the Green's function arising from electronic structure theoryh,
in: Frontiers of Computational Science, eds. Y. Kaneda, H. Kawamura and M. Sasai,
Springer-Verlag, Berlin/Heidelberg, 2007, pp. 189-195.
Ÿ T. Sogabe and S.-L. Zhang, (Invited Paper)
gAn iterative method based on an A-biorthogonalization process for nonsymmetric linear systemsh,
in: Proceedings of The 7th China-Japan Seminar on Numerical Mathematics, eds. Z.-C. Shi and H. Okamoto,
Science Press, Beijing, 2006, pp. 120-130.
Ÿ T. Sogabe and S.-L. Zhang, (Invited Lecture)
gExtended conjugate residual methods for solving nonsymmetric linear systemsh,
in: Numerical Linear Algebra and Optimization, ed. Y. Yuan, Science Press, Beijing/NewYork, 2004, pp. 88-99.



u‹†˜^
Ÿ ‘å‹´‚ ‚·‚©C‘]‰ä•”’mLC
uŠg’£ƒeƒ“ƒ\ƒ‹˜a‚ɑ΂·‚éÅ‘åEŬ“ÁˆÙ’lŒvŽZ `”’l‘½düŒ`‘㔂©‚ç‚̃Aƒvƒ[ƒ`` vC
‹ž“s‘åŠw”—‰ðÍŒ¤‹†Šu‹†˜^1957CuVŽž‘ã‚̉Ȋw‹Zp‚ðŒ¡ˆø‚·‚é”’l‰ðÍŠwvC2015.7C ppD38-44D
Ÿ ¡‘q‹ÅC ‘]‰ä•”’mLC’£Ð—ÇC
uƒVƒtƒgÌüŒ`•û’öŽ®‚ɑ΂·‚郊ƒXƒ^[ƒg•t‚«Shifted Krylov•”•ª‹óŠÔ–@‚ɂ‚¢‚ÄvC
‹ž“s‘åŠw”—‰ðÍŒ¤‹†Šu‹†˜^1791Cu‰ÈŠw‹ZpŒvŽZ‚É‚¨‚¯‚é—˜_‚Ɖž—p‚ÌV“WŠJvC2012.4C ppD47-56D
Ÿ T. Miyata, T. Sogabe, and S.-L. Zhang,
gOn the convergence of the Jacobi-Davidson method based on a shift invariance propertyhC
RIMS Kokyuroku 1733, Mathematical foundation and development of algorithms for scientific computingC2011.3, pp. 78-84.
Ÿ T. Sogabe, T. Hoshi, S.-L. ZhangCand T. Fujiwara,
gA fast numerical method for generalized shifted linear systems with complex symmetric matriceshC
RIMS Kokyuroku 1719, Recent Developments of Numerical Analysis and Numerical Computation ALgorithmsC2010.11, pp. 106-117.
Ÿ T. Sogabe and S.-L. ZhangC
gOn the use of the QMR SYM method for solving complex symmetric shifted linear systemshC
RIMS Kokyuroku 1614, High Performance Algorithms for Computational Science and Their ApplicationsC2008.10, pp. 124-135.
Ÿ T. Sogabe and S.-L. Zhang
gCRS: a fast algorithm based on Bi-CR for solving nonsymmeric linear systemsh,
The First China-Japan-Korea Joint Conference on Numerical Mathematics & The Second East Asia SIAM Symposium,
Hokkaido University Technical Report Series in Mathematics (–kŠC“¹‘åŠw”Šwu‹†˜^), 112(2006), pp. 15-18.
Ÿ –Ø‘º‹ÓŽiC•½–ìÆ”äŒÃC‰¬“c•ŽjCŽRàVGŽ÷C‘]‰ä•”’mLC‰¡ŽR˜aOC
uReal Root Counting‚ÉŠÖ‚·‚é˜b‘èvC
‹ž“s‘åŠw”—‰ðÍŒ¤‹†Šu‹†˜^1456CuCA-ALIASvC2005.11CppD180-187D
Ÿ ’·’JìG•FC‘]‰ä•”’mLC‰¬“c •ŽjC
u”ñ‘ÎÌs—ñ‚©‚綬‚³‚ꂽ‘ÎÌs—ñ‚ɑ΂·‚éCG –@vC
‹ž“s‘åŠw”—‰ðÍŒ¤‹†Šu‹†˜^1362Cu”’l‰ðÍ‚ÆV‚µ‚¢î•ñ‹ZpvC 2004.4C ppD6-12D
Ÿ ‘]‰ä•”’mLC’£Ð—ÇC
uBi-CR–@‚ÌÏŒ^‰ð–@‚ɂ‚¢‚ÄvC
‹ž“s‘åŠw”—‰ðÍŒ¤‹†Šu‹†˜^1362Cu”’l‰ðÍ‚ÆV‚µ‚¢î•ñ‹ZpvC2004.4CppD22-30D
Ÿ ‘]‰ä•”’mLC“¡–ì´ŽŸC’£Ð—ÇC
uCOCG–@‚ÌÏŒ^‰ð–@‚ɂ‚¢‚ÄvC
‹ž“s‘åŠw”—‰ðÍŒ¤‹†Šu‹†˜^1320Cu”÷•ª•û’öŽ®‚Ì”’l‰ð–@‚ÆüŒ`ŒvŽZvC2003.5CppD201-211D
@

‰ðà˜_•¶
Ÿ —§‰ª•¶—C‘]‰ä•”’mLC’£Ð—ÇC
”’lÏ•ª‚ÉŠî‚­s—ñŽÀ”æ‚ÌŒvŽZ‚ɂ‚¢‚ÄC
ŒvŽZ”—HŠwƒŒƒrƒ…[, Vol. 2019-2 (2019), pp. 45-55.
Ÿ ‘]‰ä•”’mLC ’£Ð—ÇC @@@
‘å‹K–̓VƒtƒgüŒ`•û’öŽ®‚Ì”’l‰ð–@|ƒNƒŠƒƒt•”•ª‹óŠÔ‚Ì«Ž¿‚É’…–Ú‚µ‚Ä|C
‰ž—p”—CVol. 19CNo. 3C2009CppD27-42D


‹LŽ–“™
Ÿ ‘]‰ä•”’mL
‚Æ‚Ñ‚ç‚ÌŒ¾—t
“ú–{‰ž—p”—Šw‰ï˜_•¶ŽCVol. 24, No. 1, 2014, p.1.
Ÿ ‘]‰ä•”’mL @@@
Šª“ªŒ¾C
‰ž—p”—CVol. 34CNo. 4C2024Cp.1D


’˜‘
@@
   Krylov Subspace Methods for Linear Systems —Principles of Algorithms
   Spiringer Series in Computational Mathematics, Springer, 2023D


’˜‘i•ª’SŽ·•Mj
@@
w20¢‹I‚̃gƒbƒv10ƒAƒ‹ƒSƒŠƒYƒ€x i‹à“cs—YEùˆä—¶ ŠÄCC’£Ð—Ç •ÒjCŒvŽZ‰ÈŠwuÀC‹¤—§o”ÅC2022D
@@u3ÍFüŒ`•û’öŽ®‚Ì‚½‚߂̃NƒŠƒƒt•”•ª‹óŠÔ–@v
@@
wŒvŽZ‰ÈŠw‚Ì‚½‚ß‚ÌŠî–{”—ƒAƒ‹ƒSƒŠƒYƒ€x i‹à“cs—YEùˆä—¶ ŠÄCC’£Ð—Ç •ÒjCŒvŽZ‰ÈŠwuÀC‹¤—§o”ÅC2019D
@@u2ÍFüŒ`•û’öŽ®vCu5ÍF”ñüŒ`•û’öŽ®vCu6ÍFŠÖ”‹ßŽ—vC
@@u8ÍF”’lÏ•ªvC@u9ÍFí”÷•ª•û’öŽ®vCu10ÍF•Î”÷•ª•û’öŽ®v

w”’lüŒ`‘㔂̔—‚ÆHPCxiŸNˆä“S–çC¼”ö‰F‘×C•Ð‹ËF—m •ÒjC‹¤—§o”ÅC2018D
@@u4ÍFs—ñŠÖ”‚Ì”’lŒvŽZ–@v
@@


’˜‘i•ª’SŽ·•MAƒnƒ“ƒhƒuƒbƒNj
@iƒnƒ“ƒhƒuƒbƒNj
w21st Century Nanoscience - A Handbookx(Klaus D. Sattler ed.), CRC Press, 2020D
@@uKrylov solversv‚Ì€–ÚiChap:15, pp. 8-10 j
@iƒnƒ“ƒhƒuƒbƒNj
w‰ž—p”—ƒnƒ“ƒhƒuƒbƒNxiŽF–€‡‹gC‘åÎiˆêC™Œ´³èû •ÒjC’©‘q‘“XC2013D
@@u˜A—§1ŽŸ•û’öŽ®‚ɑ΂·‚é’¼Ú‰ð–@v‚Ì€–ÚCppD408-411D
@@u˜A—§1ŽŸ•û’öŽ®‚ɑ΂·‚锽•œ‰ð–@v‚Ì€–ÚCppD412-415D